Некоторые главы мат. анализа
Функция f(x), определенная на всей числовой оси называется периодической, если существует такое число , что при любом значении х выполняется равенство
. Число Т называется периодом функции.
Отметим некоторые с в о й с т в а этой функции:
1)Сумма, разность, произведение и частное периодических функций периода Т есть периодическая функция периода Т.
2)Если функция f(x) период Т , то функция f(ax)имеет период .
3)Если f(x)- периодическая функция периода Т , то равны любые два интеграла от этой функции, взятые по промежуткам длины Т (при этом интеграл существует), т. е. при любых a и b справедливо равенство .
Если f(x) разлагается на отрезке в равномерно сходящийся тригонометрический ряд:
(1)
,то это разложение единственное и коэффициенты определяются по формулам:
, где n=1,2, . . .
Тригонометрический ряд (1) рассмотренного вида с коэффициентами называется тригонометрическим рядом Фурье, а коэффициентами ряда Фурье.
Точка разрыва функции
называют точкой разрыва первого рода, если существует конечные пределы справа и слева этой функции в данной точке.
ТЕОРЕМА 1 (Дирихле). Если периодическая с периодом
функция непрерывна или имеет конечное число точек разрыва 1-ого рода на отрезке [
] и этот отрезок можно разбить на конечное число частей, в каждом из которых f(x) монотонна, то ряд Фурье относительно функции сходится к f(x) в точках непрерывности и к среднеарифметическому односторонних пределов в точках разрыва рода (Функция удовлетворяющая этим условиям называется кусочно-монотонной).
ТЕОРЕМА 2. Если f(x) периодическая функция с периодом , которая на отрезке [
] вместе со своей производной непрерывна или имеет конечное число точек разрыва первого рода, то ряд Фурье функции f(x) в точках разрыва к среднему арифметическому односторонних пределов (Функция удовлетворяющая этой теореме называется кусочно-гладкой).
Пусть f(x) - четная функция с периодом 2L , удовлетворяющая условию f(-x) = f(x) .
Тогда для коэффициентов ее ряда Фурье находим формулы:
=
=
= 0
, где n=1,2, . . .
Таким образом, в ряде Фурье для четной функции отсутствуют члены с синусами, и ряд Фурье для четной функции с периодом 2L выглядит так:
Пусть теперь f(x) - нечетная функция с периодом 2L, удовлетворяющая условию f(-x) = - f(x).
Тогда для коэффициентов ее ряда Фурье находим формулы:
, где n=1,2, . . .
Таким образом, в ряде Фурье для нечетной функции отсутствует свободный член и члены с косинусами, и ряд Фурье для нечетной функции с периодом 2L выглядит так:
Если функция f(x) разлагается в тригонометрический ряд Фурье
на промежутке то
, где ,
,
,
Если f(x) разлагается в тригонометрический ряд Фурье на [0,L], то доопределив заданную функцию f(x) соответствующим образом на [-L,0]; далее периодически продолжив на (T=2L), получим новую функцию, которую разлагаем в тригонометрический ряд Фурье.
Для разложения в ряд Фурье непериодической функции, заданной на конечном произвольном промежутке [a,b], надо : доопределить на [b,a+2L] и периодически продолжить, либо доопределить на [b-2L,a] и периодически продолжить.
Ряд Фурье по любой ортогональной системе функцийПоследовательность функций непрерывных на отрезке [a,b], называется ортогональной системой функции на отрезке [a,b], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если
Система называется ортогональной и нормированной (ортонормированной) на отрезке [a,b],
если выполняется условие
Пусть теперь f(x) - любая функция непрерывная на отрезке [a,b]. Рядом Фурье такой функции f(x) на отрезке [a,b] по ортогональной системе называется ряд:
коэффициенты которого определяются равенством:
n=1,2,...
Если ортогональная система функций на отрезке [a,b] ортонормированная, то в этом случаи
где n=1,2,...
Пусть теперь f(x) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a,b]. Рядом Фурье такой функции f(x) на томже отрезке
по ортогональной системе называется ряд:
,
Если ряд Фурье функции f(x) по системе (1) сходится к функции f(x) в каждой ее точке непрерывности, принадлежащей отрезку [a,b]. В этом случае говорят что f(x) на отрезке [a,b] разлагается в ряд по ортогональной системе (1).
Комплексная форма ряда ФурьеВыражение называется комплексной формой ряда Фурье функции f(x), если
определяется равенством
, где
Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:
(n=1,2, . . .)
Пусть в состоянии равновесия натянута струна длинной l с концами x=0 и x=l. Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.
При сделанных выше допущениях можно показать, что функция u(x,t) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению
(1) , где а - положительное число.
Наша з а д а ч а - найти функцию u(x,t) , график которой дает форму струны в любой момент времени t, т. е. найти решение уравнения (1) при граничных:
(2)
и начальных условиях:
(3)
Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u(x,t)0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведения u(x,t)=X(x)T(t), (4) , где
,
.
Подстановка выражения (4) в уравнение (1) дает:
Из которого наша задача сводится к отысканию решений уравнений:
Используя это условие X(0)=0, X(l)=0, докажем, что отрицательное число, разобрав все случаи.
a)Пусть Тогда X”=0 и его общее решение запишется так:
откуда и
,что невозможно , так как мы рассматриваем решения, не обращающиеся тождественно в нуль.
б) Пусть . Тогда решив уравнение
получим , и, подчинив, найдем, что
в) Если
то
Уравнения имеют корни :
получим:
где -произвольные постоянные. Из начального условия найдем:
откуда , т. е.
(n=1,2,...)
(n=1,2,...).
Учитывая это, можно записать:
(n=1,2,...).
и, следовательно
, (n=1,2,...),
но так как A и B разные для различных значений n то имеем
, (n=1,2,...),
где и
произвольные постоянные, которые попытаемся определить таким образом, чтобы ряд удовлетворял уравнению (1), граничным условиям (2) и начальным условиям (3).
Итак, подчиним функцию u(x,t) начальным условиям, т. е. подберем и
так , чтобы выполнялись условия
Эти равенства являются соответственно разложениями функций и
на отрезки [0, l] в ряд Фурье по синусам. ( Это значит что коэффициенты будут вычисляться как для нечетной функций). Таким образом, решение о колебании струны с заданным граничными и начальными условиями дается формулой
где
(n=1,2,...)
Достаточные условия представимости функции в интеграл Фурье.
Для того, чтобы f(x) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:
1)абсолютной интегрируемости на
(т.е. интеграл сходится)
2)на любом конечном отрезке [-L, L] функция была бы кусочно-гладкой
3)в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f(x)
Интегралом Фурье функции f(x) называется интеграл вида:
, где ,
.
Пусть f(x)-четная функция, удовлетворяющая условиям представимости интегралом Фурье.
Учитывая, что , а также свойство интегралов по симметричному относительно точки x=0 интервалу от четных функций, из равенства (2) получаем:
(3)
Таким образом, интеграл Фурье четной функции f(x) запишется так:
,
где a(u) определяется равенством (3).
Рассуждая аналогично, получим, для нечетной функции f(x) :
(4)
и, следовательно, интеграл Фурье нечетной функции имеет вид:
,
где b(u) определяется равенством (4).
Комплексная форма интеграла Фурье , (5)
где
.
Выражение в форме (5) является комплексной формой интеграла Фурье для функции f(x).
Если в формуле (5) заменить c(u) его выражением, то получим:
, где правая часть формулы называется двойным интегралом
Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу
в действительной форме и обратно осуществим с помощью формул:
Обратное преобразование Фурье.
где n=1,2,... , k=1,2,...
Дискретным преобразованием Фурье - называется N-мерный вектор
при этом, .
Данную выше функцию сделаем четной(см. теорию), и рассмотрим ее на промежутке от 0 до смотри рис.2
Рис.2
поэтому разложение по косинусу имеет вид:
Из разложения видим что при n=2 дробь теряет смысл поэтому отдельно рассмотрим разложения первого и второго коэффициента суммы:
На основе данного разложения запишем функцию в виде ряда:
и вообще
.
Найдем первые пять гармоник для найденного ряда:
1-ая гармоника
2-ая гармоника
3-я гармоника
4-ая гармоника
5-ая гармоника
А теперь рассмотрим сумму этих гармоник F(x):
Комплексная форма ряда по косинусамДля рассматриваемого ряда получаем коэффициенты (см. гл.1)
,
но при не существует, поэтому рассмотрим случай когда n=+2 :
(т.к.
см. разложение выше)
и случай когда n=-2:
( т.к.
)
И вообще комплексная форма:
или
или
Аналогичным образом поступаем с данной функцией F(x), продлевая ее как нечетную, и рассматриваем на промежутке от 0 до смотри рис.3
Рис.3
поэтому разложение по синусам имеет вид:
Из данного разложения видно, что при n=2 произведение неопределенно (можно не учесть часть суммы), поэтому рассмотрим два отдельных случая.
При n=1:
,
и при n=2:
Учитывая данные коэффициенты имеем разложения в виде
и вообще
Найдем первые пять гармоник для данного разложения:
1-ая гармоника
2-ая гармоника
3-ая гармоника
4-ая гармоника
5-ая гармоника
И просуммировав выше перечисленные гармоники получим график функции F(x)
Вывод:
На основании главы 2, разложение функции в тригонометрический ряд(рис.1), разложение в ряд по косинусам(рис.2), разложение по синусам(рис.3), можно заключить, что данная функция разложима в тригонометрический ряд и это разложение единственное. И проанализировав суммы первых пяти гармоник по каждому разложению можно сказать, что наиболее быстрее к заданному графику достигается при разложении по синусам.
Комплексная форма ряда по синусамОсновываясь на теорию (см. гл.1) для ряда получаем:
,
(т.к.
)
тогда комплексный ряд имеет вид:
Проверка условий представимости
Данную ранее функцию (см. гл. 2) доопределим на всей прямой от до
как равную нулю(рис.4).
Рис.4
а) f(x)-определенна на R;
б) f(x) возрастает на , f(x) убывает на
- кусочнo-монотонна.
f(x) = const на и
.
<
.
В соответствии с теорией (см. гл. 1) найдем a(u) и b(u):
;
.
И в конечном варианте интеграл Фурье будет выглядеть так:
Теперь представим интеграл Фурье в комплексной форме. На основе выше полученных разложений имеем:
,
,
а теперь получим интеграл в комплексной форме:
.
Функцию можно разложить в ортонормированной системе пространства X=[-1,1] , причем полиномы получим, если проинтегрируем выражение:
Соответственно получим для n=0,1,2,3,4,5, ... :
. . . . . . . . . .
Для представления функции полиномом Лежандра необходимо разложить ее в ряд:
,
где и разлагаемая функция должна быть представлена на отрезке от -1 до 1.
Наша первоначальная функция имеет вид (см. рис. 1):
т. к. она расположена на промежутке от 0 до необходимо произвести замену, которая поместит функцию на промежуток от -1 до 1.
Замена:
и тогда F(t) примет вид
или
Исходя из выше изложенной формулы для коэффициентов находим:
Далее вычисление коэффициентов осложнено, поэтому произведем вычисление на компьютере в системе MathCad и за одно проверим уже найденные:
Рассмотрим процесс стремления суммы полинома прибавляя поочередно - слагаемое:
А теперь рассмотрим график суммы пяти полиномов F(t) на промежутки от -1 до 0 (рис.5):
Рис. 5
т.к. очевидно, что на промежутке от 0 до 1 будет нуль.
Вывод:
На основе расчетов гл.2 и гл.4 можно заключить, что наиболее быстрое стремление из данных разложений к заданной функции достигается при разложении функции в ряд.
ГЛАВА 5 ДИСКРЕТНЫЕ ПРЕОБРАЗОВАНИЯ ФУРЬЕ Прямое преобразование Для того, чтобы произвести прямое преобразование, необходимо задать данную функцию (гл. 1, рис. 1) таблично. Поэтому разбиваем отрезок от 0 до на N=8 частей, так чтобы приращение:
В нашем случае , и значения функции в k-ых точках будет:
для нашего случая (т.к. a=0).
Составим табличную функцию:
k
![]() Реклама
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена |