Расчет адгезионных характеристик металлов в модели обобщенного потенциала Хейне-Абаренкова
М.В. Мамонова, Р.В. Потерин, В.В. Прудников, Омский государственный университет, кафедра теоретической физики
Явление возникновения связи между поверхностными слоями разнородных конденсированных тел, приведенных в соприкосновение, получило название адгезии. С физической точки зрения, адгезия определяется силами межмолекулярного взаимодействия, наличием ионной, ковалентной, металлической и других типов связи. Возникает необходимость определения характеристик адгезионного взаимодействия различных материалов как с точки зрения прикладной, так и фундаментальной науки о поверхностных явлениях.
В предлагаемой работе в рамках метода функционала плотности проведен расчет адгезионных характеристик для ряда металлов. Исследованы влияния различных приближений, учитывающих дискретность кристаллической структуры и неоднородность электронного газа в межфазной области раздела. Для расчета влияния электрон-ионного взаимодействия на адгезионные характеристики металлов нами был впервые использован обобщенный псевдопотенциал Хейне-Абаренкова. Проведен сравнительный анализ результатов, полученных с его использованием, с результатами, полученными с привлечением иных моделей, в частности, псевдопотенциала Ашкрофта.
Метод
функционала плотности состоит в решении вариационной задачи о нахождении
минимума энергии системы электронов, рассматриваемой на фоне заданного
положительного заряда. В качестве пробных функций электронного распределения,
как правило, выбирают решения формально линеаризованного уравнения
Томаса-Ферми, а вариационным параметром считают обратную длину экранирования .
Рассмотрим два полуограниченных металла, занимающих области z<-D и z>D. Пусть положительный заряд фона распределен в соответствии с формулой
где
и
- плотности
заряда фона;
- ступенчатая
функция. Решение линеаризованного уравнения Томаса-Ферми с использованием
граничных условий, отражающих непрерывность электростатического потенциала
(z) и
электрической индукции d
/dz при z=
D, а также
конечность потенциала на бесконечности, позволяет при связи
(z)=-4
n(z)/
получить
следующее выражение для плотности электронного распределения n(z) в системе:
где
Определим межфазную энергию взаимодействия контактирующих металлов, приходящуюся на единицу площади, как интеграл по z от объемной плотности энергии основного состояния электронного газа:
В рамках модели "желе" объемная плотность энергии неоднородного электронного газа может быть представлена в виде градиентного разложения:
где
есть плотность энергии однородного электронного газа в атомных единицах, включающая последовательно электростатическую, кинетическую, обменную и корреляционную энергии, а
где
- фермиевский
волновой вектор, являются
соответственно градиентными поправками второго порядка на неоднородность
электронного газа для кинетической энергии в приближении Вейцзекера-Киржница и
обменно-корреляционной энергии в приближении Вашишты-Сингви (VS) [1].
Приближение VS является наиболее употребимым для большинства металлов. Учет
только поправки для кинетической энергии без рассмотрения влияния
соответствует
приближению хаотических фаз (ПХФ).
Поправки к межфазной энергии, связанные с учетом дискретности распределения положительного заряда, вычисляются в рамках модели псевдопотенциала Хейне-Абаренкова:
усредненного
по кристаллическим плоскостям, параллельным поверхности металлов, и будут
характеризоваться параметрами и
межплоскостными расстояниями
. В результате
поправка, связанная с электрон-ионным взаимодействием, принимает вид:
Для получения поправки к межфазной энергии, связанной с взаимодействием ионов металлов, мы воспользовались интерполяционной формулой, предложенной в [2]. Тогда
где
- валентности
металлов;
- расстояния
между ближайшими ионами в плоскостях, параллельных поверхностям металлов.
В
соответствии с методом функционала плотности величина вариационного параметра находится из
требования минимальности полной межфазной энергии
где
.
Решение
уравнения (10) задает значения параметра как функцию
величины зазора 2D. Итогом решения вариационной задачи является полная
межфазная энергия системы
. Зная ее,
легко найти энергию адгезии системы как работу, необходимую для удаления
металлов друг от друга на бесконечность, т.е.
. Тогда сила
адгезионного взаимодействия системы определяется как производная по D от
межфазной энергии
при
:
В соответствии с вышеизложенной методикой разработана программа численного интегрирования в (3) при одновременной минимизации в (10). Расчеты адгезионных характеристик были проведены для ряда простых и переходных металлов, полагая, что к межфазной границе раздела металлы направлены плотноупакованными гранями. Значения исходных параметров, использованные для расчета адгезионных характеристик металлов, приведены в следующей таблице:
Me ![]() Реклама
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена |